自从2009年初始发布以来,Redis受到了巨大的欢迎并且成为拥有大型社区的部署数据存储平台之一。 虽然Redis有很令人难忘的特性,但是它也有一个严重的限制--它是为了单机模式设计的。如果用户需要超过单机的能力,就需要使用专用分区系统。不过3.0.0版本发布了一种集群系统产品,可以从根本上简化分布式Redis部署。 所有人都认可Redis很快,我们来看看Hazelcast和Redis的比较。这份报告是为了观察Redis集群方案(v3.0.7)对比Hazelcast(v3.6.1)的表现, 特别是在重负荷的情况下。 为了确保我们在比较Hazelcaset和Redis时候拥有稳定的环境,我们选择使用我们通常用于测试Hazelcast性能改进的室内测试实验室。 |
实验室配置 测试在由HP ProLiant DL380系列服务器构成的集群上进行。每一台机器配置有双socket Xeon E5-2687W v3@3.10Ghz, 每个CPU10核,超线程可用(一共有20个物理的,40个虚拟核),并且还有768G 2133Mhz的内存(24X32GB 模块)。在操作系统方面,我们使用简单的RHEL7安装,这表示在测量中不会使用虚拟软件。每台机器使用一个40 GbE SolarFlare 网卡(Sloarflare SFN7142Q Dual Port 40 GbE)来做点对点的通信。 为了执行Redis 测试,我们决定选择Jedis做客户端,因为它很流行(在github上有3481个星)并且对集群模式有非常好的支持度。 为了排除其他影响,我们决定雇佣Infinispan开发社区创建的第三方测量工具RadarGun。因为RadarGun不提供直接可用的Redis支持,我们需要自己集成。感兴趣的人可以去github上获取RadarGun fork和Redis插件。 |
我们需要什么作为测试场景,我们想要基于客户增长数和并发处理数据数来比较Hazelcast和Redis的表现。所有的测试都在测试环境的 4个节点集群上执行并观察,4个基本测试场景需要被执行: 脚本 客户端数 每个客户端的进程数 1 1 1 2 4 8 3 4 32 4 4 64 正如上文所说,我们用以下版本来执行测试:
吞吐量看一下吞吐量结果,Redis在少量客户端和/或进程的情况下非常快,但是它在高并发负载下变得很慢。测量超过特定数量的线程会拖慢Redis内部结构的可扩展性。另一方面,Hazelcast在很小的负载情况下表现较差,但是在并发处理和高数量客户端或线程开始被进入的时候,测量表现要远高于Redis。
脚本 Hazelcast 结果(reqs/s) Redis 结果(reqs/s)
|
延迟性根据结果,延迟性表现和并发性测试里有类似模式。Redis在低数据负载的时候响应比Hazelcast表现更好,而在数据负载和并发请求增加时则表现相反。在不常见的大环境(如我们在脚本4)我们可以看到Redis的平均响应时间剧烈的增长。Hazelcast响应时间虽然也随着线程数增加而增长,但是这种增长要稳定得多,而且不像Redis表现的那样是指数级。
|
结论
|
本文转自:开源中国社区 [http://www.oschina.net]
本文标题:Redis 和 Hazelcast – RadarGun 对二者的比较
本文地址:http://www.oschina.net/translate/redis-vs-hazelcast-radargun-puts-them-to-a-challenge
参与翻译:阿采, 无若
英文原文:Redis vs. Hazelcast – RadarGun Puts Them To A Challenge