有些人议论所谓“10x”或者“超级”的程序员都是传说。可那些著名运动员,艺术家,作家,呃,还有摇滚明星的都是神话吗?
— Yevgeniy Brikman (@brikis98) September 29, 2013
我收到了大量的回复和问题,但微博不适合讨论问题,所以我写了这篇博格来进一步讨论。
已经有 一 堆 的 文章 号称10x的程序员根本不存在。反对观点一般分为以下三种:
最初10x这个数字来自一个研究(Sackman,Erikson, and Grant (1968)),不是很有说服力。
生产力是个很难测量的模糊概念,所以我们不应该声称诸如10x之 类的度量。
个人才华确有高低不同,但一个程序员不可能比另一个程序员高出10倍的工作能力。
我不同意以上的这些观点,我来逐条看一下这些论点。
[译者注]:10x程序员(10x效应来自一个有趣的观察: 伟大的程序员相比普通程序员的生产力不仅是15-20%的差距 ,很可能会10倍甚至更多)的说法最初来自于 www.forbes.com 和 www.tempobook.com
对10x程序员的研究不只有一个
尽管微博和Hacker News里那些坐在摇椅里的学术专家喜欢驳斥同行 的研究结果,然而10x程序员的证据相当令人信服而且并不限于单个研究。 请允许我引用来自 StackOverflow里得票最多的回复 :
Sackman, Erikson, and Grant在1968年进行的最初研究发现程序员的编程效率有巨大的差异。他们研究了平均有7年经验的专业编程人员,发现最好和最差的编程人员初次写代码所用的时间比率大概是20比1;调试时间大概是25比1;程序大小大概是5比1;程序执行速度大概是10比1。他们还发现,编程者的经验和代码质量的好坏并没有关系。
对他们的发现进行详细的考证,可以看出一些方法论上的缺陷。。。 然而,即使考虑了这些缺陷, 他们的数据依然可以呈现出最好和最差的程序员之间不止10倍的差 距。
在首个研究之后的几年里,“程序员之间倍数级的差距”这一发现被其他许多专业程序员的研究所验证(Curtis 1981, Mills 1983, DeMarco and Lister 1985, Curtis etal. 1986, Card 1987, Boehm and Papaccio 1988, Valett and McGarry 1989, Boehm etal 2000)…
在 这里 and 这里 你可以读到更多。
即使不能测量,依然可以推理
即使你无视上面的研究,声称“编程效率”很难测量-那也表示我 们依然可以讨论下10倍效率程序员。 仅仅是因为一个东西很难测量并不代表我们不能测量。
比如,你是如何为你最近的项目挑选编程语言的? 你有去搜索证明这种语言比其他更有效率的研究吗?个人来讲, 我不需要经验就可以证明Ruby在构建网站方面比C高效了好多倍 。你可以抛出一些粗略的准则(程序库的可利用性,社区支持,文档等), 但现实是大多数人会基于直观推理来选择语言, 并不是什么双盲研究。尽管缺少数据资料,我打赌选Ruby而不是 C去做网站开发大多数时候都会被证明是一个正确的决定。
当然,编程并不是个例:什么样的度量标准可以判断某个作家, 艺术家,教师或者哲学家比另外一个好?仅通过观察, 我不能给你一个“生产力度量标准”说莎士比亚,纳博科夫, 或者奥威尔比一般的作家好了好几倍, 但是大多数人会同意他们是的。
编程不是体力劳动
针对10倍效率程序员的最大问题是有些人认为编程不过是体力劳动 ,程序员也不过是流水线上的工人。 一些程序员可能会比其他人好一些,但是, 一个程序员必定不可能持续地比其他人解决10倍多的问题。10个 人的团队总是会胜过一个程序员!9个女人一起也不可能在一个月内 就生出一个孩子啊!
上面的逻辑听起来就像编程效率就是打字速度;好像10x程序员只 是简单地比普通程序员多产了10倍的代码。 这种推理无视了编程其实是一个创造性的专业,并不是体力劳动。 解决同一个问题有许多许多种方式。 更多地考虑刑侦级推理而不是简单的婴儿式推理:10个普通的侦探 对一个夏洛克。谁可以更快地破案?
一个10x程序员有普通程序员无法企及的解决问题的能力和洞察力 ;他们将会避开耗费普通程序员大量时间的所有问题。10个写错误 代码的工程师肯定不如一个写正确代码的程序员。
编程是选择
想一想一个软件的构建需要做多少决定,比如一个网站: 你要采用什么语言?采用什么样的架构?用什么存储数据? 用什么来高速缓存?在哪里托管站点?如何监测? 如何推动新的改变?怎么存储代码?需要设置什么样的自动化测试?
10个普通程序员在每个阶段都可以做出“平均”水平的决定, 这些决定的成本或者收益会累乘。设想流量呈指数增长, 但是这个普通的团队构建了一个普通的网站,难以分区的数据存储, 缺少足够冗余的托管,没有合适备份的版本控制, 没有持续集成环境,以及没有监测。 如果他们的时间全在忙于到处灭火,这10个程序员能有多高效?
如果一个程序员可以以倍数级降低的工作量的方式来建模这个问题, 那么这一个程序员就胜过一个10个人的团队。 从我多年的经验来看, 一个伟大的程序员知道那些事后修补更为昂贵的错误。 预先做出一个好的决定,一个10x程序员可以避免数月的工作。
编程不是写更多的代码;是要写正确的代码。成为一个 10x 程序 员并不是因为你做了几倍多的工作, 而是因为你更为经常地做出更好的决定。
这不是说10x程序员就完全不会犯错; 而是程序员每天都要做出许多选择, 伟大的程序员会比普通的程序员更为经常地做出正确的选择。
而且这并不只是说编程。你是更想要10个普通科学家呢还是牛顿? 10个普通科学家可不会提出运动三定律,万有引力,二项式序列, 微积分等;一个牛顿就做到了。 在你的团队里你是更想要一个迈克尔乔丹呢还是10个普通球员?( 注意:乔丹拿着10倍于NBA球员的平均薪资)? 你是更想让史蒂夫乔布斯或者艾伦马斯克运作公司或者把钥匙交给1 0个普通的企业家?
10x 程序员非常稀有
把目光放长远一点很重要。明星程序员,运动员, 作家以及科学家是极为稀有的。我并不推荐仅雇佣这些“摇滚明星” 的招聘体系;这只会看起来愚蠢又孤独。 不要让完美成为不错的敌人:雇佣能找到的最好的的工程师, 给他们变得越来越好的机会。
然而,不要掉入所有的程序员生来平等的谬论。 在任何一个创造性的专业都存在一个巨大的能力谱图。 一端是可以毁掉一个组织的雇员类型, 每行他们写下的代码都增加了技术负债。另一端, 则是那些可以写出任何可能的代码,而且数倍地优秀于普通人的人。
[英文原文: The 10x developer is NOT a myth ]
转自 http://www.vaikan.com/the-10x-developer-is-not-a-myth/
时间: 2015-02-25 08:38
来源 :外刊IT评论
作者 :素材不乱
原文链接